Associate Professor Michael Oelgemöller

Applied and Green Photochemistry Group

C:\Users\jc208992\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Matthew Bolte and_IMG_9794_Copyright Danielle Hansen.jpg

Dipl-Chem (Münster)

Dr rer nat (Cologne)

Associate Professor

Molecular Sciences Building DB21, TOWNSVILLE CAMPUS

Office: CH210

Lab: CH211

FULL TIME

orange bar

News

Profile

Experiences

Research

Opportunities

Group

Lab

Awards

Grants

Publications

Teaching

Outreach

Telephone:

(07) 4781 4543 (Australia)

+61 7 4781 4543 (International)

Facsimile:

(07) 4781 6078 (Australia)

+61 7 4781 6078 (International)

Email:

michael.oelgemoeller@jcu.edu.au

Skype:

michael.oelgemoeller

Research:

JCU’s research portfolio

Publications:

JCU research Online listing

Group News

October 2014: Tyler has submitted his Honours Thesis. Congratulations!

October 2014: Our ‘Eradicate Insect-borne Diseases with Sunlight Initiative’ won the JCU TropEco Sustainability Research Award. Matthew and Michael also received a ‘Highly commended’ staff Excellence Award. Congratulations and well done!

C:\Users\jc208992\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\1382093_755757784487637_1465706791359895093_n.jpg

September 2014: Hossein has arrived from Tehran. Welcome!

August 2014: Jutta has graduated. Congratulations Dr. Kockler!

August 2014: Our group participated in the JCU Open Day! Thanks and well done!

C:\Users\jc208992\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\10514484_10152729386456178_259435722148323094_n.jpg

August 2014: Matt, Matthew, Richard and Amy have started their projects. Welcome!

August 2014: Danilo won a poster award at the AIMS@JCU Student Seminar Day. Congratulations!

July 2014: Our collaborative work on ‘Microflow Photochemistry’ has been awarded with the European Photochemistry Association – Photochemical & Photobiological Sciences Prize 2014 (presented to Dr. Norbert Hoffmann). Excellent and congratulations!

[Up]

Profile

Associate Professor Michael Oelgemöller is a leading expert in green (solar) photochemistry, microflow photochemistry and photocatalysis. He received his Diploma from the University of Münster in 1995 and his PhD from the University of Cologne in 1999. He was a researcher at the Inoue Photochirogenesis project in Osaka (1999-2001) and at Bayer CropScience K.K. Japan in Yuki (2001-2004). From 2004-2008 he held a position as a lecturer in Organic and Medicinal Chemistry at Dublin City University, Ireland. In February 2009 he joined James Cook University in Australia as an Associate Professor in Organic Chemistry. His research activities include synthetic organic photochemistry, solar photochemistry, the development of new photochemical synthesis tools and photochemical water treatment.

[Up]

Experiences

since 2009: Associate Professor in Organic Chemistry, James Cook University, Australia

2004-2009: Lecturer in Organic and Medicinal Chemistry, Dublin City University, Ireland

2001-2004: Researcher at Bayer CropScience K.K., Japan

1999-2001: Researcher at the Inoue Photochirogenesis Project, ERATO, JST, Japan

1999: Dr rer nat (summa cum laude; Cologne, Germany) with Prof. A. G. Griesbeck

1995: Dipl. Chem. (HD; Münster, Germany) with Prof. J. Mattay

Seminar: Organic Photochemistry – From Laboratory Synthesis to Large Scale Production to Microphotochemistry (A Personal Account)

[Up]

Research Interests

Our research is dedicated to applied organic photochemistry (video by Prof. A. G. Griesbeck), photocatalysis and green photochemistry. Since 2004, our group has developed several novel phototransformations and has utilized them for the synthesis of known pharmacologically active compounds, for example 3-aryl- and 3-alkylmethyleneisoindolin-1-ones. We have also contributed significantly to the area of macrocyclizations and for example synthesised macrocyclic polypeptides with potential applications as drug-delivery vehicles or peptidomimetics. Other research areas dealt with the development of novel synthetic photochemistry tools for the pharmaceutical R&D community, e.g. photochemistry in microstructured reactors for which we introduced the term ‘Microflow-photochemistry’. We have published several review articles on this emerging technology and experimental set-ups from our laboratory were featured on journal and book covers. The first review article has also been highlighted in Chem. Technol. in its December 2008 issue. We are currently a world leader in this innovative technology. A special focus within the synthesis stream has been solar chemistry, i.e. the implementation of solar energy into chemical production processes. Due to our contributions in this field, our research group has emerged as a world-leader in the synthesis of commodity chemicals with concentrated and non-concentrated sunlight. A series of publications entitled ‘Green Photochemistry’ underpin this leading position. Recently, we have launched a second research stream on photochemical water treatment. This more applied area deals with the destruction of priority pollutants and microorganisms in water. In collaboration with Prof. Glass at JCU, we are also interested in the stability of solid pharmaceutical formulations and cosmetics, in particular sunscreens, towards sunlight.

See also: JCU’s research portfolio

Journal Cover 9781439811818 C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image015.png C:\Mike-HDD\Databases\Reprints\mcontent.jpg

[Up]

Continuous Microflow photochemistry – Lab & Light on a chip

Our collaborative activities on ‘Microflow Photochemistry’ have been awarded with the European Photochemistry Association – Photochemical & Photobiological Sciences Prize 2014 (presented to Dr. Norbert Hoffmann).

Recently, microflow photochemistry has emerged as a new synthesis tool that successfully combines the small dimensions of microreactors with continuous flow mode. The compact size of microflow photoreactors also allow for the usage of light emitting diodes (LED) as miniaturized light sources.

Our group is investigating a series of homogeneous and heterogeneous photoreactions to demonstrate the superiority of microflow photochemistry over conventional batch syntheses. The results are compared to experiments in conventional chamber reactors. The research also involves the construction of novel LED-driven microchips and their implementation in the synthesis of bioactive compounds. Flexible and inexpensive microcapillary reactors have also been designed and fabricated as part of this project. One of the major drawbacks of current microflow photoreactors is the need to perform individual reactions separately in-series. Bundling of numerous microcapillaries enables the parallel synthesis of product libraries instead. This innovative reactor concept allows for rapid, resource- and space-efficient reaction optimization, scale-up and parallel synthesis.

Our group at JCU is a leader in this emerging technology and has developed a number of innovative microreactor systems for photochemical transformations in the past. Our research is part of an existing collaboration with the group of Prof Kakiuchi at the Nara Institute of Science and Technology (NAIST). Research stays in Japan as part of this project are thus possible via an existing exchange agreement between JCU and NAIST.

This research area is currently funded by the Australian Research Council under a successful Discovery Project grant (DP13).

This research is suitable for students with an interest in microtechnology/chemical engineering and organic chemistry.

FFM BILD2886 copy2 BILD2848

Falling film microreactor, LED-driven microchip and dual-microcapillary tower

References:

1. M. Oelgemöller, N. Hoffmann, O. Shvydkiv Austr. J. Chem. 2014, 67, 337.

2. M. Oelgemöller, A. Murata MedChem News 2012, 22(4), 30.

3. M. Oelgemöller Chem. Eng. Technol., 2012 35, 1144.

4. M. Oelgemöller, O. Shvydkiv Molecules, 2011 16, 7522.

5. E. Coyle, M. Oelgemöller Photochem. Photobiol. Sci., 2008 7, 1313.

[Up]

Outdoor Chemistry – The Production of Fine Chemicals with Sunlight

Our ‘Eradicate Insect-borne Diseases with Sunlight Initiative’ won the JCU TropEco Sustainability Research Award 2014. Matthew and Michael also received a ‘Highly commended’ staff Excellence Award 2014.

Over the last years, the call for sustainable developments and reduction of CO2-emission has led to increasing interest in environmentally friendly technologies and thus in Green Chemistry in general. Photochemistry can serve as a sustainable technology (light as a clean reagent), especially if sunlight is used as the source of radiation. Our group at JCU is a leader in this technology and has realised solar, semi-technical scale reactions in the past.

This research area investigates the large-scale, solar synthesis of fragrances, flavours and pharmaceutical precursors. These target compounds are valuable fine-chemicals of industrial importance. Additionally, many starting materials are available in large quantities from biomass, in particular agricultural waste material. Our research results will thus help to reduce our dependency on fossil fuels. Recently, we have launched the ‘Solar Chemicals from and for the Tropics’ initiative, which has been funded through a Pathfinder award. We are also collaborating with the German Aerospace Centre (DLR) in Cologne, Germany, on the usage of concentrated sunlight.

In collaboration with the University of Hawaii, we are also investigating the usage of ‘solar floats’. These devices use natural water-reservoirs as heat-sinks and thus avoid the high cooling water demand of conventional photochemical processes.

This research area is suitable for students with an interest in environmental, technical and organic chemistry.

C:\Users\jc208992\Desktop\Photos\DSC01657.JPG C:\Mike-HDD\Picture-DB\Solar-Pics\DLR\PROPHIS\PROPHIS-DLR.jpg Boogey Board

Matthew with our solar reactors at JCU, PROPHIS loop at the DLR and ‘solar float’ (Prof. R. Liu)

References:

1. S. Mumtaz, C. Sattler, M. Oelgemöller “Solar Photochemical Manufacturing of Fine Chemicals – Historical Background, Modern Solar Technologies, Recent Applications and Future Challenges”; in: Chemical Processes for a Sustainable Future, T. M. Letcher, J. L. Scott, D. Patterson (Eds.), Royal Society of Chemistry, Cambridge, UK, 2014, Chapter 10, in print, ISBN: 978-1-849739757.

2. M. Oelgemöller, C. Jung, J. Mattay Pure Appl. Chem., 2007, 79, 1939.

3. M. Oelgemöller, C. Jung, J. Ortner, J. Mattay, E. Zimmermann Green Chem. 2005, 7, 35.

4. C. Schiel, M. Oelgemöller, J. Ortner, J. Mattay Green Chem. 2001, 3, 224.

[Up]

Medicinal Chemistry with Light – Photochemical Synthesis of Bioactive Compounds

The neglect of organic photochemistry by the industrial R&D community has left a diverse structural pool of possible new lead structures almost completely unexplored. Over the last years, our Group at JCU has developed a series of useful photochemical transformations, which are applied to the synthesis of novel bioactive compounds.

In particular, the photodecarboxylative (PDC) addition of a carboxylates to phthalimides can be utilized in the synthesis of pharmacologically active alkyl- or arylmethylidene isoindolinones. Members of this important target family possess cardiovascular, anti-cancer and anaesthetic properties. Despite conventional photochemical chamber reactors, microreactors are being investigated.

The research involves chemical analysis, biological screening and the development of structure-activity profiles.

This research area is suitable for students with an interest in medicinal and organic chemistry.

DSC00831 microreactor

Rayonet chamber reactor (Southern New England) and Glass-made microreactor (Dwell device, mikroglas) under a UV exposure panel (Luzchem)

References:

1. F. Hatoum, J. Engler, C. Zelmer, J. Wißen, C. A. Motti, J. Lex, M. Oelgemöller Tetrahedron Lett. 2012, 53, 5573.

2. V. Belluau, P. Noeureuil, E. Ratzke, A. Skvortsov, S. Gallagher, C. A. Motti, M. Oelgemöller Tetrahedron Lett. 2010, 51, 4738.

3. F. Hatoum, S. Gallagher, L. Baragwanath, J. Lex, M. Oelgemöller Tetrahedron Lett. 2009, 50, 6335.

[Up]

Twisting Molecules with Light – Photochemical Macrocyclisations

The focus of this research area is to study photoinduced cyclization reactions of peptides and peptide analogues. The aims are twofold: (I) to identify new candidates for encapsulation, molecular recognition or sensoring and (II) to synthesise novel peptidomimetics that mimic γ- or β-turns. Interesting biologically active target families are benzodiazepines and pyrrolames. The project includes the synthesis of polypeptides and their isosteres using parallel synthesis and photochemical studies using various photochemical reactors and techniques.

The research involves chemical analysis, biological screening and the development of structure-activity profiles.

This research area is suitable for students with an interest in medicinal and organic chemistry.

chamber reactorRIMG0989 C:\Users\jc208992\Desktop\Syncore-JCU.jpg

Rayonet chamber reactor (Southern New England) and parallel synthesizer (Büchi)

References:

1. M. Oelgemöller, S. Gallagher, K. McCarthy “Microflow Photochemistry – Photodecarboxylations in Microformats” Processes 2014, 2, 158.

2. Y.-J. Lee, D.-H. Ahn, K.-S. Lee, A. R. Kim, D. J. Yoo, M. Oelgemöller Tetrahedron Lett. 2011, 52, 5029.

3. A. R. Kim, K.-S. Lee, C.-W. Lee, D. J. Yoo, F. Hatoum, M. Oelgemöller Tetrahedron Lett. 2005, 46, 3395.

4. A. G. Griesbeck, T. Heinrich, M. Oelgemöller, A. Molis, J. Lex J. Am. Chem. Soc. 200 2, 124, 10972.

[Up]

Cleaning Water with Light – Photocatalytic Degradation of Organic Pollutants in Water

Water is Australia’s most precious natural resource and consequently, its protection is a high national priority. The presence of pharmaceuticals in the aquatic environment and their possible effects on living organisms is emerging as a global environmental concern. These persistent organic chemicals are only partially eliminated during conventional wastewater treatment and have been detected in the effluent of wastewater treatment plants. Ultimately, the quality of drinking water is thus at risk. In Australia, frequent water shortage additionally calls for sufficient and cost-efficient water treatment technologies.

This research area combines detection and destruction of pharmaceuticals in water. The target analytes are selected based on prescription data and will incorporate different pharmaceutical classes. HPLC methods are subsequently developed for quantification of pollutant levels. The pharmaceuticals are then destroyed by treatment with semiconductor particles and both UV-light and sunlight. Degradations are monitored by a suite of analytical tools, especially HPLC and LC-MS.

An additional approach deals with the development of novel Integrated Photocatalytic Adsorbents (IPCAs), i.e. hybrid materials of conventional adsorbents and titanium dioxide. IPCAs combine the advantageous properties of both substances and merge them into novel ‘capture & destroy’ materials.

Solar degradation studies are also performed ‘indoors’ with solar simulators and ‘outdoors’ using solar floats. Large-scale (>50 L) degradation experiments are furthermore conducted using a novel CPC solar reactor.

This research ultimately aims to develop future treatment methods for hospital wastewater and is suitable for students with an interest in analytical, pharmaceutical and environmental chemistry.

C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image042.jpg C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image044.jpg C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image046.jpg

Enviolet tandem UV reactor (aqua concept), CPC reactor and HPLC instrument

References:

1. D. Kanakaraju, C. A. Motti, B. D. Glass, M. Oelgemöller Environ. Chem. 2014, 11, 51.

2. D. Kanakaraju, B. D. Glass, M. Oelgemöller Environ. Chem. Lett. 2014, 12, 27.

3. J. Kockler, D. Kanakaraju, B. D. Glass, M. Oelgemöller J. Sustain. Sci. Manag . 2012, 7, 23.

4. A.-M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey Internat. J. Environ. Sci. Technol. 2011, 8, 649.

[Up]

Sustainable Aquaculture Water Treatment

Aquaculture is one of the fasted growing industries in the world and of particular economic importance to Australia. Of the high value species farmed, marine prawn is predominantly produced in Queensland. One of the major concerns of the aquacultural industry is biosecurity. Species of the genus Vibrio have been recognized as the most significant pathogens in aquaculture of marine fish and have been linked to food poisoning and mass mortality of shrimp larvae. The same microorganism currently prevents the closed life cycle farming of tropical rock lobster, which is regarded a lucrative aquaculture product.

Current aquaculture water management relies heavily on resource- and energy-demanding technologies, such as chlorination or ozonation. Given the scale, 34% of the operating costs of a conventional water treatment facility are thus energy needs. These are currently met mainly by fossil-fuel-derived energy contributing significantly to climate change. Advanced Oxidation Processes (AOPs) using singlet oxygen is the most promising ‘soft’ technique for water sterilisation.

Our research represents an effective, economical and climate-smart approach and uses sunlight, air and an organic dye instead. The technology thus reduces greenhouse gas emissions of water treatment plants and eliminates pathogens in aquaculture water. While UVC treatment is performed industrially (and is used as a reference method), it suffers from several disadvantages in terms of operation costs and safety hazards. Likewise, sterilization of seawater using ozone is highly energy- and resource-intensive.

Process optimization and after treatment re-growth methods are used to evaluate detoxification efficiency up to industrial demonstration scales. Toxicity tests on farmed marine species are also envisaged in the near future.

The project is part of AIMS@JCU and runs in collaborations with A/Prof Heimann (JCU) and Dr Lacombe (University of Pau).

This research field is suitable for students with an interest in aquaculture, marine chemistry and microbiology.

C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image048.jpg C:\Users\jc208992\Desktop\Mike-Desktop\Mike-2012\SP_Michael_Oelgemoller-August-2012_files\image050.jpg

Heart reef and photochemical detoxification experiment

References:

1. J. Vandenberhe, L. Verdonck, R. Robles-Argozarena, G. Rivera, A. Bolland, M. Balladares, B. Gomez-Gil, J. Calderon, P. Sorgeloos, J. Swings Appl. Environ. Microbiol. 1999, 65, 2592.

2. M. Magaraggia, F. Faccenda, A. Gandolfi, G. Jori J. Environ. Mon. 2006, 8, 923.

3. S. Josset, N. Keller, M. Lett, M. Ledoux, V. Keller Chem. Soc. Rev. 2008, 37, 744.

[Up]

Research Opportunities

General

Our research group is very international and multidisciplinary. Potential internship, Honours, BSc, MSc, PhD and PostDoc candidates are welcomed to join us.

For possible Scholarships and other funding opportunities (internal and external), see JCU’s Scholarships and JASON databases.

PostDocs

Early career researchers with a PhD interested in joining the Applied Photochemistry Research Group should contact Michael to discuss potential projects. There are a number of scholarship opportunities through the Australian Research Council (DECRA), Endeavour, Australia Awards, the Science and Industry Endowment Fund (SIEF) or the Australian Renewable Energy Agency (ARENA). Deadlines do apply for most of these schemes.

Postgraduate

Students interested in undertaking a PhD or Masters project in the Applied Photochemistry Research Group should contact Michael to discuss projects of mutual interest. Most higher degrees students would be expected to be eligible for a scholarship through the Australian Postgraduate Award (APA) scheme, the James Cook University Postgraduate Research Scholarship, the AIMS@JCU Scholarship scheme, the Australian Renewable Energy Agency (ARENA), the Sugar Research Australia (SRA) or an equivalent national or international scholarship.

The Australian Postgraduate Award (APA) and James Cook University Postgraduate Research Scholarship (JCUPRS) are open to applicants with, or who expect to hold, a first class honours degree or equivalent by the end of the year and who wish to undertake full-time research Masters or PhD program. The stipends for an APA are approximately $25,000 pa (full time) or $12,500 (part-time). APA applicants must be Australian citizens or have been granted permanent resident status and lived in Australia continuously for 12 months prior to receiving the award; Information and application forms can be obtained from the Graduate Research School. Closing Dates: 31. August (international applicants) and 31 October (national applicants) of each year.

Honours

Students who have completed their undergraduate training in a BSc, BPharm or equivalent program and are interested in participating in the Chemistry Honours Program are encouraged to contact Michael for a description of currently available projects. Honours studies require a full-time commitment for one year (two semesters) and can start in either February or August.

Undergraduate

Students enrolled in CH3104 (Advanced Chemistry Project) can undertake their research project in the Green and Applied Photochemistry Laboratory. Students are also welcomed as research volunteers. Contact Michael for further details.

[Up]

Research Group

PhD students

Saira Mumtaz, Higher Education Commission Pakistan – International Research Support Initiative Program, “Photochemical Modification of Imides in Batch and Micro Flow Reactors”.

Fidelis Jaravani, Faculty Cohort Doctoral Studies program, “Drinking water quality in rural Hunter New England region of New South Wales – risks, determinants and intervention strategies”.

Danilo Malara, JCU International Research Scholar, “Sterilization of Aquaculture Water using Singlet Oxygen” (co-supervisor, with A/Prof Heimann).

Natalia Andrade Rodriguez, “Immunity and Secondary Metabolite Production in the Soft Coral Lobophytum Pauciflorum and the Effects of Stress” (co-supervisor, with Prof Miller).

Padmakana Malakar, “Application of Microflow Photochemistry in the Synthesis of Platform Chemicals of Pharmaceutical Interest”.

Visiting PhD student

Hossein Mohammadkhani, “Photochemical Reactions in Microflow Reactors”, Payam Noor University, Mashhad (Iran).

Christian Faderl, DAAD Scholar, “Visible light mediated decarboxylation of N-acyloxyphthalimides”, University of Regensburg, Regensburg (Germany).

MSc Students

Luke Ashton “Photodecarboxylative Additions and Cyclizations”, for the University of Southampton, Southampton (United Kingdom).

Sam Josland “Flow-photochemical investigations in the Vapourtec UV-150 reactor”, for the University of Southampton, Southampton (United Kingdom).

Honours student

Tyler Goodine (HonPharm), “Synthesis of antimalarials under continuous flow conditions”.

Research Volunteer

Matthew Bolte “Solar production of commodity chemicals”.

Project Students

Matthew McCullough “Synthesis of photoactive Phthaloyl Dipeptides”

Amy Dunkerton “Investigation of Solar Floats for the Photooxygenations”.

Matt Hill “Solar photooxygenations in a flatbed reactor”.

Richard Hunter “Design and construction of a solar continuous flow reactor and its application in solar photochemical synthesis”.

Thomas Hampton “Design and construction of a solar heating system and its application to the solarthermal synthesis of insect repellents”.

[Up]

Lab and Equipment

Within the Molecular Sciences Building (DB21) our group runs a fully equipped and recently refurbished synthesis laboratory with write-up space and a specialized photochemistry section. Our group furthermore occupies dedicated space for microflow-chemistry and student office space. Our team additionally operates modern equipment required for applied photochemistry, in particular batch (Rayonet and Luzchem) and micro reactors (dwell device, falling film and various microchip platforms) for photochemical transformations. We also operate an advanced Vapourtec UV-150 flow photoreactor. The group has full access to the analytical equipment within the school (300 MHz NMR, FT-IR, HPLC, GC, UV-Vis) and within the associated Advanced Analytical Center. Through a scientific membership in AIMS@JCU, we have furthermore access to the Biomolecular Analysis Facility at the Australian Institute of Marine Science (AIMS) to use their advanced NMR and HR-MS facilities.

CIMG4352 CIMG4473

CIMG4477 CIMG4484

Applied and Green Photochemistry Lab

CIMG4499 CIMG4362

Microflow Lab and HPLC room

CIMG4470 CIMG4564

Michael’s and Students’ Office

[Up]

Awards and Fellowships

Awards

2014: JCU TropEco Sustainability Awards – Research Award and ‘Highly commended’ staff Excellence Award for our ‘Eradicate Insect-borne Diseases with Sunlight Initiative’

2014: European Photochemistry Association – Photochemical & Photobiological Sciences Prize (presented to Dr. Norbert Hoffmann).

2013: JCU TropEco Sustainability Awards – ‘Highly commended’ curriculum award and ‘Highly commended’ outstanding research award for the ‘Solar Chemicals Research Team’

2012: Finalist ‘Solar Chemicals from and for the Tropics’ for the Tropical Innovations Award 2012 – People’s Choice Award

2011: Distinguished Lectureship award of the Chemical Society of Japan.

2004: Bayer Employee award of the Research Centre in Yuki.

2000: Kurt-Alder award of the University of Cologne.

1999: University degree summa cum laude.

[Up]

Fellowships/Lectureships

2012: Visiting Professorship at the CNRS/University of Pau, Pau (France).

2012: Visiting Professorship at Nara Institute of Science and Technology, Nara (Japan).

2011: Visiting Professorship at Osaka Prefecture University, Osaka (Japan).

2009: Visiting Professorship at the CNRS/University of Pau, Pau (France).

2006: Guest Lectureship at Osaka University, Osaka (Japan).

1997: Fellowship of the Korean Science and Engineering Foundation (KOSEF) and the Deutscher Akademischer Austauschdienst (DAAD).

[Up]

Conference Awards

2014: Danilo Malara: Best Student Poster Presentation Award, AIMS@JCU Student Seminar Day, Townsville (Australia).

2013: Dr. Jutta Kockler: Best Student Poster Presentation Award, 6th Asian Association of Schools of Pharmacy Conference, Singapore (Singapore).

2013: Tyler Goodine: Best Honours Oral Presentation Award, North Queensland Festival of Life Sciences, Townsville (Australia).

2012: Dr. Devagi Kanakaraju: Best Student Poster Presentation Award, North Queensland Festival of Life Sciences, Townsville (Australia).

2011: Dr. Oksana Shvydkiv: Best Oral Presentation Award, Royal Society of Chemistry Photochemistry Group Meeting, Dublin (Ireland).

2010: Dr. Devagi Kanakaraju: Best PhD Oral Presentation Award, Townsville Festival of Life Sciences, Townsville (Australia).

2007: Dr. Emma Coyle: Best Poster Presentation Award, Royal Society of Chemistry Photochemistry Group – Young Researchers’ Meeting, Loughborough (United Kingdom).

[Up]

Invited Speeches

2014: Invited Speaker International Conferences on Microreaction Technology (IMRET13), Budapest (Hungary).

2014: Invited Speaker Hiroshima International Symposium for Future Science (HISFS), Hiroshima (Japan).

2013: Invited Speaker 4th Asia-Oceania Conference on Green and Sustainable Chemistry (AOC-4 GSC), New Taipei City (Taiwan).

2013: Invited Speaker Wissenschaftsforum der GDCh - Innovative Potenziale der Photochemie in Medizin und Technik, Darmstadt (Germany).

2013: Invited Speaker Gordon Research Conference on Photochemistry, Easton (USA).

2013: Invited Speaker 6th Heron Island Conference on Reactive Intermediates & Unusual Molecules, Heron Island (Australia).

2012: Invited Speaker Meeting on Efficient photon-harvesting molecules and reactions for Green Photonics, Nara (Japan).

2012: Invited Speaker 7th Asia and Oceania Conference on Photochemistry (APC2012), Osaka (Japan).

2012: Invited Speaker Flow Chemistry Asia, Singapore (Singapore).

2011: Invited Speaker 9th Green Chemistry Conference, Alcala de Henares (Spain).

2011: Invited Speaker Inspiring Tropical Australia Conference, Townsville (Australia).

2011: Honour of Key-Note Speaker 91th Annual Meeting of the Chemical Society of Japan, Kanagawa (Japan).

2010: Invited Speaker Groups for Research on Automated Flow and Microreactor Synthesis (GRAMS) Symposium, Osaka (Japan).

2010: Invited Speaker Symposium on recent Developments on Microreactor and micro-TAS Technologies, Osaka (Japan).

2009: Invited Speaker Challenges in Environmental Science and Engineering, Townsville (Australia).

2008: Invited Speaker Challenge of Sustainability, Dundalk (Ireland).

2008: Key-Note Speaker Intl. Conference on Molecular/Nano-Photochemistry, Photocatalysis and Solar Energy Conversion – Solar’08, Cairo (Egypt).

2007: Invited Speaker Environmental Research Symposium, Dublin (Ireland).

2006: Invited Speaker Gordon Research Conference on Green Chemistry, Oxford (United Kingdom).

[Up]

Consultative Talks

2014: Takeda Pharmaceutical Co. Ltd – Osaka Research Center, Osaka (Japan).

2013: ThalesNano Inc., Budapest (Hungary).

2012: Shionogi & Co., Ltd. – Innovative Drug Discovery Research Laboratories, Osaka (Japan).

2011: YMC Co. Ltd. – Microreactor Laboratory, Kyoto (Japan).

2008: Plataforma Solar de Almería, Almería (Spain).

2007: Solar Energy Society Ireland, Dublin (Ireland).

2002: Aventis CropScience Shionogi, Akeno (Japan).

2001: Nippon Bayer Agrochem K.K. – Yuki Research Centre, Yuki (Japan).

2000: Bayer Yakuhin Ltd. – Research Centre Kyoto, Kyoto (Japan).

[Up]

Editorial Boards

since 2014: Member of the Editorial Board of Sustainable Chemical Processes (Chemistry Central-Springer).

since 2013: Member of the Advisory Board of ChemBioEng Reviews (Wiley).

since 2012: Regional Editor for Australia and Member of the International Advisory Board of the Journal of Flow Chemistry (Akadémiai Kiadó).

since 2009: Member of the Advisory Board of Green Chemistry (RSC).

[Up]

Selected Grants

2014/2015: Researcher Mobility Grant of James Cook University and Nara Institute of Science and Technology (Japan) on Microflow Photochemistry (AU-$ 10,000/year), with Prof Kiyomi Kakiuchi as Lead-CI.

2014: Research Infrastructure Block Grant of James Cook University (AU-$ 10,000).

2014: JCU Teaching and Learning Development Grant on First year chemistry ICT learning support – stage II (AU-$ 9,957).

2014: Australian Institute of Tropical Health and Medicine (AITHM) – Project Grant on Sustainable Production of Artemisinin (AU-$ 17,000), with Prof Beverley Glass as PI.

2014: AIMS@JCU Pilot Research Award of James Cook University (AU-$ 1,000), with A/Prof Heimann.

2013: JCU – International Postgraduate Scholarship on Sustainable Aquaculture Water Treatment (AU-$ 169,959), with A/Prof Heimann as Lead-CI.

2013: Research Infrastructure Block Grant of James Cook University (AU-$ 10,610).

2013: Clinton Health Access Initiative – Project Grant on Flow Photooxygenations (AU-$ 16,000).

2012: Australian Research Council (ARC) – Discovery Project on Microflow Photochemistry (AU-$ 240,000), with Prof Beverley Glass as Co-CI and Dr Norbert Hoffmann as PI.

2012: Scholarship – International Research Support Initiative Program of the Higher Education Commission Pakistan on Microflow Photochemistry (AU-$ 8,400).

2012: JCU Teaching and Learning Development Grant on Implementation of Digital Support for the First Year Chemistry Practical Series (AU-$ 16,000), with Dr Chris Glasson.

2012: Visiting Fellowship of the CNRS/University of Pau on Microflow Photooxygenations (€ 3,800)

2012: Research Infrastructure Block Grant of James Cook University (AU-$ 9,279).

2012: JCU Graduate Research Scheme on Demonstration-scale Photodegradation of Pharmaceutical Wastewater (AU-$ 2,000).

2012: JCU Pathfinder Application on Solar Production of Commodity Chemicals (AU-$ 25,544).

2011/2012: Researcher Mobility Grant of James Cook University and Nara Institute of Science and Technology (Japan) on Microflow Photochemistry (AU-$ 10,000/year), with Prof Kiyomi Kakiuchi as Lead-CI.

2011: Collaboration across Boundaries Scheme of James Cook University on Novel Biomaterials (AU-$ 8,694), with A/Prof Mohan Jacob as Lead-CI.

2011: Faculty Grant Scheme, James Cook University (AU-$ 8,500).

2011: Competitive Research Incentive Grant, James Cook University (AU-$ 15,000).

2010/2011: IUPAC Project on Standard Photochemical Processes, IUPAC (US-$ 10,000), with Prof Axel Griesbeck (Cologne) as Lead-CI.

2010: Griffith University – James Cook University Collaborative Grant Scheme, James Cook University (AU-$ 8,677), with Prof Beverley Glass as Lead-CI.

2010: Collaboration across Boundaries Scheme, James Cook University (AU-$ 9,450), with A/Prof Heimann as PI.

2010/2011: STRIVE Doctoral Scholarship Scheme, Irish Environmental Protection Agency (€ 27,000).

2009: Faculty Grant Scheme, James Cook University (AU-$ 9,655).

2009: Research Infrastructure Block Grant, James Cook University (AU-$ 49,000).

2009-2012: Marie-Curie Training Network Doctoral Scholarship (€ 90,000; total ca. € 6,000,000).

2009-2012: Research Award, QUESTOR (€ 97,950).

2009-2012: Doctoral Scholarship, IrishAid (€ 90,000; total ca. € 1,250,000).

2008-2011: STRIVE Doctoral Scholarship Scheme, Irish Environmental Protection Agency (€ 94,622).

2008-2011: STRIVE Programme, Irish Environmental Protection Agency (€ 100,000; total € 350,000).

2008-2011: Research Award, QUESTOR (€ 96,500).

2008: Equipment Call, Science Foundation Ireland (€ 70,490).

2008: STAR programme, Science Foundation Ireland (€ 32,813).

2007-2010: Research Award, QUESTOR (€ 84,450).

2007-2010: Research Frontier Programme 2006, Science Foundation Ireland (€ 172,000).

2007-2010: Research Frontier Programme 2006, Science Foundation Ireland (€ 127,500).

2007-2010: STRIVE Doctoral Scholarship Scheme, Irish Environmental Protection Agency (€ 95,000).

2006-2009: Albert College Award, Dublin City University (€ 40,000).

2006-2009: PhD studentship, IRCSET (€ 72,000).

2006-2007: Research Frontier Programme 2006, Science Foundation Ireland (€ 50,000).

[Up]

Selected Recent Publications

pdf deposits of publications: JCU research Online listing

accepted or in print

M. Oelgemöller, N. Hoffmann “Photoreactions”; in: Encyclopedia of Physical Organic Chemistry, Z. Wang (Ed.), Wiley-VCh, Weinheim 2015, accepted (by invitation of the editor).

M. Oelgemöller, N. Hoffmann “Photochemically induced radical reactions with furanones” Pure Appl. Chem. 2014, 86, accepted (by invitation; European Photochemistry Association – Photochemical & Photobiological Sciences Prize Lecture).

D. Kanakaraju, J. Kockler, C. A. Motti, B. D. Glass, M. Oelgemöller “ Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin” Appl. Cat. B: Environ. 201 4, accepted.

F. G. Jaravani, D. Durrheim, P. Byleveld, M. Oelgemöller, J. Judd “Drinking water safety in recreational parks in northern New South Wales, Australia” Austral. J. Environ. Manag. 2014, in print.

S. Basha, D. Keane, K. Nolan, M. Oelgemöller, J. Lawler, J. M. Tobin, A. Morrissey “UV induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics” Environ. Sci. Poll. Res. 2014, in print.

S. Mumtaz, C. Sattler, M. Oelgemöller “Solar Photochemical Manufacturing of Fine Chemicals – Historical Background, Modern Solar Technologies, Recent Applications and Future Challenges”; in: Chemical Processes for a Sustainable Future, T. M. Letcher, J. L. Scott, D. Patterson (Eds.), Royal Society of Chemistry, Cambridge, UK, 2014, Chapter 10, in print, ISBN: 978-1-849739757 (by invitation of the editors).

M. Oelgemöller “Von Singing Rooms in Korea nach Down Under”; in: Wege nach Korea, Deutscher Akademischer Austauschdienst, Bonn 2014, in print.

M. Oelgemöller “The sunny side of Chemistry at James Cook University” Chem. Austr. 2014, in print (by invitation of the editor).

[Up]

2014

S. Josland, M. Oelgemöller “α-Photodecarboxylation of Phthaloyl Glycine” A p pli ca t io n N o te No. 38, Vapourtec Ltd 2014, 7 pages.

J. Ahmed, K. Bazaka, M. Oelgemöller, M. V. Jacob “Wetting, solubility and chemical characteristics of plasma polymerized 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films” Coatings 2014, 4, 527-552.

M. Oelgemöller “Profiles – Professor Michael Oelgemöller” AITHM Newslett. 2014, July, 5-7.

Selected as ‘Highlight Article’ by the Guest Editor: M. Oelgemöller “Green photochemical processes and technologies for research & development, scale-up and chemical production” J. Chin. Chem. Soc. 2014, 61, 743-748 (by invitation of the editors; co-featured on cover; themed issue Green & Sustainable Chemistry).

J. Kockler, M. Oelgemöller, S. Robertson, B. D. Glass “Influence of Titanium dioxide Particle Size on the Photostability of the Chemical UV-filters Butyl methoxy dibenzoylmethane and Octocrylene in a Microemulsion” Cosmetics 2014, 1, 128-139.

H. Baumann, U. Ernst, M. Goez, A. Griesbeck, M. Oelgemöller, T. Oppenländer, M. Schlörholz, B. Strehmel “Licht als kleinstes Reagenz und Werkzeug” Nachr. Chem. 2014, 62, 507-512 (by invitation of the editor; themed series Innovative Potenziale der Photochemie).

S. Mumtaz, R. Hussain, A. Rauf, M. Q. Fatmi, H. Bokhari, M. Oelgemöller, A. M. Qureshi “Synthesis, molecular docking studies, and in vitro screening of barbiturates/thiobarbiturates as antibacterial and cholinesterase inhibitors” Med. Chem. Res. 2014, 23, 2715-2726.

M. Oelgemöller, M. Bolte “Laboratory profile of the ‘Applied and Green Photochemistry Research Group’ at James Cook University in Australia” Green Process Synth. 2014, 3, 163-165 (by invitation of the editor).

M. Oelgemöller, N. Hoffmann, O. Shvydkiv “From ‘Lab & Light on a chip’ to parallel Microflow Photochemistry” Austr. J. Chem. 2014, 67, 337-342 (special issue Heron6 conference).

F. Ronzani, P. Saint-Cricq, E. Arzoumanian, T. Pigot, S. Blanc, M. Oelgemöller, E. Oliveros, C. Richard, S. Lacombe “Immobilized organic photosensitizers with versatile reactivity for various visible-light applications” Photochem. Photobiol. 2014, 90, 358-368 (special Issue honoring the memory of Prof. Nicholas J. Turro).

D. Kanakaraju, C. A. Motti, B. D. Glass, M. Oelgemöller “Photolysis and TiO2-catalyzed degradation of diclofenac in surface and drinking water using circulating batch photoreactors” Environ. Chem. 2014, 11, 51-62.

M. Oelgemöller, M. Bolte “Crescente Luce – Light is ever increasing in the Applied and Green Photochemistry research group at JCU” TropEco News 2014, 11, 6-7.

D. Kanakaraju, B. D. Glass, M. Oelgemöller “Titanium dioxide photocatalysis for pharmaceutical wastewater treatment: a review” Environ. Chem. Lett. 2014, 12, 27-47 (by invitation of the editors).

M. Oelgemöller, S. Gallagher, K. McCarthy “Microflow Photochemistry – Photodecarboxylations in Microformats” Processes 2014, 2, 158-166 (by invitation; themed issue Design and Engineering of Microreactor and Smart-Scaled Flow Processes).

[Up]

2013

S. Aida, Y. Nishiyama, K. Kakiuchi, N. Hoffmann, A. Fon, M. Oelgemöller “Microflow Photochemistry – Acetone sensitized Addition of Isopropanol to (5R)-5-Menthyloxy-2-(5H)-furanone” Rapid Commun. Photosci. 2013, 2, 68-71.

J. Kockler, C. A. Motti, S. Robertson, M. Oelgemöller, B. D. Glass “HPLC Method for the Simultaneous Determination of the UV-filters Butyl methoxy dibenzoylmethane and Octocrylene in the Presence of their Photodegradants” Chromatographia. 2013, 76, 1721-1727.

D. Kanakaraju, B. D. Glass, M. Oelgemöller “Heterogeneous Photocatalysis for Pharmaceutical Wastewater Treatment”; in: Green Materials for Energy, Products and Depollution (Environmental Chemistry for a Sustainable World, Vol. 3), E. Lichtfouse, J. Schwarzbauer, D. Robert (Eds.), Springer, Dordrecht 2013, Chapter 3, 69-133.

K. Nolan, A. Yavorskyy, M. Oelgemöller, O. Shvydkiv “Flow Photochemistry – A Green Technology with a Bright Future”; in: EPA STRIVE Programme 2007–2013, Environmental Protection Agency 2013, Report Series No.101, ISBN: 978-1-84095-477-7, 19 pages.

S. Bachollet, K. Terao, Y. Nishiyama, K. Kakiuchi, M. Oelgemöller “Microflow Photochemistry: UVC-induced [2+2]-photoadditions to furanones in a microcapillary reactor” Beilstein J. Org. Chem. 2013, 9, 2015-2021 (by invitation; themed issue Chemistry in flow systems III).

M. Bolte, K. Klaeden, A. Beqiraj, C. Glasson, M. Oelgemöller “Regional Focus – Solar Chemicals from and for Tropical Australia” APA Newslett. 2013, 3, 7-9.

M. Bolte, K. Klaeden, A. Beqiraj, M. Oelgemöller “Photochemistry Down Under – Solar Chemicals from and for the Tropics” EPA Newslett. 2013, 84, 79-83 (by invitation of the editor).

F. Ronzani, N. Costarramone, S. Blanc, A. K. Benabbou, M. LeBechec, T. Pigot, M. Oelgemöller, S. Lacombe “Visible-light photosensitized oxidation of alpha-terpinene using original silica-supported sensitizers: photooxygenation vs. photodehydrogenation” J. Catal. 2013, 303, 164-174.

J. Kockler, S. Robertson, M. Oelgemöller, M. Davies, B. Bowden, H. G. Brittain, B. D. Glass “Butyl methoxy dibenzoylmethane”; in: Profiles of Drug Substances, Excipients and Related Methodology, Vol. 38, H. G. Brittain (Ed.), Elsevier, Oxford 2013, Chapter 3, 87-111.

[Up]

2012

K. Ghiggino, M. Oelgemöller “Regional Focus - Photochemistry in Australia and New Zealand” APA Newslett. 2012, 2, 17-21.

O. Shvydkiv, A. Yavorskyy, K. Nolan, M. Oelgemöller “Microflow photochemistry – an advantageous combination of synthetic photochemistry and microreactor technology” EPA Newslett. 2012, 93, 65-69 (by invitation; themed issue Photochemical Organic Synthesis).

M. Oelgemöller, A. Murata “Continuous microflow photochemistry and its application in pharmaceutical drug discovery, development and production” MedChem News 2012, 22(4), 30-40 (by invitation of the editors).

K. Terao, Y. Nishiyama, H. Tanimoto, T. Morimoto, M. Oelgemöller, K. Kakiuchi “Diastereoselective [2+2] Photocycloaddition of a chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor” J. Flow Chem. 2012, 2, 73-76 (by invitation; themed issue IMRET-2012).

A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller “Parallel Microflow-Photochemistry: Process Optimization, Scale-up and Library Synthesis” Org. Lett. 2012, 14, 4342-4345.

S. Aida, K. Terao, Y. Nishiyama, K. Kakiuchi, M. Oelgemöller “Microflow photochemistry – a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction” Tetrahedron Lett. 2012, 53, 5578-5581.

F. Hatoum, J. Engler, C. Zelmer, J. Wißen, C. A. Motti, J. Lex, M. Oelgemöller “Photodecarboxylative addition of carboxylates to phthalimides: a concise access to biologically active 3-(aryl and alkyl)methylene-1H-isoindolin-1-ones” Tetrahedron Lett. 2012, 53, 5573-5577.

J. Kockler, D. Kanakaraju, B. D. Glass, M. Oelgemöller “Solar Photochemical and Photocatalytic Degradation of Diclofenac and Amoxicillin in Water” J. Sustain. Sci. Manag . 2012, 7, 23-29.

A. Yavorskyy, O. Shvydkiv, C. Limburg, K. Nolan, Y. M. C. Delauré, M. Oelgemöller “Photooxygenations in a bubble column reactor” Green Chem. 2012, 14, 888-892.

M. Oelgemöller, R. Frank, P. Lemmen, D. Lenoir, J. Lex, Y. Inoue “Synthesis, structural characterization and photoisomerization of cyclic stilbenes” Tetrahedron 2012, 68, 4048-4056.

O. Shvydkiv, C. Limburg, K. Nolan, M. Oelgemöller “Synthesis of Juglone (5-hydroxy-1,4-naphthoquinone) in a Falling Film Microreactor” J. Flow Chem. 2012, 2, 52-55.

S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan “Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals” Appl. Cat. B: Environ. 2012, 119-120, 156-165.

M. Oelgemöller “Highlights of Photochemical Reactions in Microflow Reactors” Chem. Eng. Technol., 2012, 35, 1144-1152 (by invitation; themed issue Reactor Design and Process Intensification).

J. Kockler, M. Oelgemöller, S. Robertson, B. D. Glass “Photostability of Sunscreen Ingredients and Formulations” J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13, 91-110 (most downloaded article in the last 90 days in April 2012; Top 15 since May 2012).

A. G. Griesbeck, M. Oelgemöller, F. Ghetti (Eds.), CRC Handbook of Organic Photochemistry and Photobiology, 3. edition, CRC Press, Boca Raton 2012, Volume 1, 879 pages, ISBN: 978-1-43989-933-5.

A. G. Griesbeck, M. Oelgemöller, F. Ghetti (Eds.), CRC Handbook of Organic Photochemistry and Photobiology, 3. edition, CRC Press, Boca Raton 2012, Volume 2, 689 pages, ISBN: 978-1-43989-933-5.

D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, S. Basha, J. Tobin “Overview of the development of Integrated Photocatalytic Adsorbents (IPCAs) for water treatment using titanium dioxide (TiO2) and activated carbon”; in: Handbook of Organic Photochemistry and Photobiology, 3. edition, A. G. Griesbeck, M. Oelgemöller, F. Ghetti (Eds.), CRC Press, Boca Raton 2012, Chapter 37, 935-962.

E. E. Coyle, M. Oelgemöller “Solar Photochemistry – From the Beginnings of Organic Photochemistry to the Solar Production of Chemicals”; in: Handbook of Organic Photochemistry and Photobiology, 3. edition, A. G. Griesbeck, M. Oelgemöller, F. Ghetti (Eds.), CRC Press, Boca Raton 2012, Chapter 10, 237-248.

O. Shvydkiv, M. Oelgemöller “Microphotochemistry – Photochemical Synthesis in Microstructured Reactors”; in: Handbook of Organic Photochemistry and Photobiology, 3. edition, A. G. Griesbeck, M. Oelgemöller, F. Ghetti (Eds.), CRC Press, Boca Raton 2012, Chapter 3, 49-72 (featured on cover).

[Up]

2011

A.-M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey “Treatment options for wastewater effluents from pharmaceutical companies” Internat. J. Environ. Sci. Technol., 2011, 8, 649-666.

A.-M. Deegan, M. Cullen, M. Oelgemöller, K. Nolan, J. Tobin, A. Morrissey “A SPE-LC-MS/MS method for the detection of low concentrations of pharmaceuticals in industrial waste streams” Anal. Lett. 2011, 44, 2808-2820.

O. Shvydkiv, K. Nolan, M. Oelgemöller “Microphotochemistry – 4,4’-Dimethyoxybenzophenone Mediated Photodecarboxylation Reactions involving Phthalimides” Beilstein J. Org. Chem. 2011, 7, 1055-1063 (by invitation; themed issue Chemistry in flow systems II).

Y.-J. Lee, D.-H. Ahn, K.-S. Lee, A. R. Kim, D. J. Yoo, M. Oelgemöller “Photoinduced electron transfer cyclizations of aryl-linked phthalimides” Tetrahedron Lett. 2011, 52, 5029-5031.

M. Oelgemöller, O. Shvydkiv “Recent Advances in Microflow Photochemistry” Molecules, 2011, 16, 7522-7550 (by invitation; themed issue Flow chemistry).

S. Basha, D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, J. M. Tobin “Novel integrated photocatalytic adsorbents (IPCAs) for degradation of pharmaceuticals from water and wastewater” EPA Newsletter 2011, 90, 18-21.

European Photochemistry Association – Photochemical & Photobiological Sciences Prize 2014: O. Shvydkiv, A. Yavorskyy, S. B. Tan, K. Nolan, N. Hoffmann, A. Youssef, M. Oelgemöller “Microphotochemistry – a reactor comparison study using the photosensitized addition of isopropanol to furanones as a model reaction” Photochem. Photobiol. Sci . 2011, 1399-1404 (by invitation; co-featured on cover; themed issue in honour of Japanese contributions to Photochemistry).

A.-M. Deegan, S. Basha, K. Urell, J. Tobin, K. Nolan, M. Oelgemöller, A. Morrissey “Treatment options for wastewater from pharmaceutical companies: a review” Internat. J. Environ. Sci. Technol., 2011, 8, 649-666.

S. Basha, C. Barr, D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, J. M. Tobin “On the adsorption/photodegradation, by integrated photocatalytic adsorbent (IPCA), of Amoxicillin from aqueous solutions: Experimental studies and kinetics analysis” Photochem. Photobiol. Sci . 2011, 10, 1014-1022.

M. Oelgemöller, J. Mattay, H. Görner “Direct photooxidation and xanthene-sensitized oxidation of naphthols: quantum yields and mechanism” J. Phys. Chem. A 2011, 115, 280-285.

D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, S. Basha, J. Tobin “Photodegradation of famotidine by integrated photocatalytic adsorbent (IPCA) and kinetic studyCat. Lett. 2011, 141, 300-308.

A. Yavorskyy, O. Shvydkiv, K. Nolan, N. Hoffmann, M. Oelgemöller “Photosensitized addition of isopropanol to furanones in a continuous-flow dual capillary microreactor” Tetrahedron Lett. 2011, 52, 278-280.

[Up]

2010

O. Shvydkiv, S. Gallagher, K. Nolan, M. Oelgemöller “From conventional to Micro-Photochemistry: Photodecarboxylation Reactions involving Phthalimides” Org. Lett. 2010, 12, 5170-5173.

M. Oelgemöller, W. H. Kramer “Synthetic Photochemistry of Naphthalimides and related Compounds” J. Photochem. Photobiol. C: Photochem. Rev., 2010, 11, 210-244.

O. Shvydkiv, A. Yavorskyy, K. Nolan, A. Youssef, E. Riguet, N. Hoffmann, M. Oelgemöller “Photosensitized addition of isopropanol to furanones in a 365 nm UV-LED microchip” Photochem. Photobiol. Sci. 2010, 9, 1601-1603.

S. Basha, D. Keane, A. Morrissey, K. Nolan, M. Oelgemöller, J. Tobin “Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, Indomethacin using novel photocatalytic adsorbents (IPCAs)Ind. Eng. Chem. Res. 2010, 49, 11302-11309.

S. B. Tan, O. Shvydkiv, J. Fiedler, F. Hatoum, K. Nolan, M. Oelgemöller “Photodecarboxylative additions of α-thioalkyl-substituted carboxylates to alkyl phenylglyoxylates” Synlett 2010, 2240-2243.

E. E. Coyle, K. Joyce, K. Nolan, M. Oelgemöller “Green photochemistry: the use of microemulsions as green media in photooxygenation reactions” Green Chem. 2010, 12, 1544-1547.

V. Belluau, P. Noeureuil, E. Ratzke, A. Skvortsov, S. Gallagher, C. A. Motti, M. Oelgemöller “Photodecarboxylative benzylations of phthalimide in pH 7 buffer: a simple access to 3-arylmethyleneisoindolin-1-ones” Tetrahedron Lett. 2010, 51, 4738-4741.

S. Gallagher, F. Hatoum, N. Zientek, M. Oelgemöller “Photodecarboxylative Additions of N-protected α-Amino Acids to N-Methylphthalimide” Tetrahedron Lett. 2010, 51, 3639-3641.

[Up]

2009

J. Q. Albarelli, D. T. Santos, S. Murphy, M. Oelgemöller “Use of Ca-Alginate as a Novel Support for TiO2 Immobilization in Methylene Blue Decolorisation” Water Sci. Technol. 2009, 60, 1081-1087.

F. Hatoum, S. Gallagher, M. Oelgemöller “Photodecarboxylative Additions of Phenoxyacetates to N-Methylphthalimide” Tetrahedron Lett. 2009, 50, 6593-6596.

B. Murphy, P. Goodrich, C. Hardacre, M. Oelgemöller “Green Photochemistry: the photoacylation of 1,4-naphthoquinone with aliphatic aldehydes in ionic liquids” Green Chem. 2009, 11, 1867-1870.

F. Hatoum, S. Gallagher, L. Baragwanath, J. Lex, M. Oelgemöller “Photodecarboxylative Benzylations of Phthalimides” Tetrahedron Lett. 2009, 50, 6335-6338.

M. B. Bakar, M. Oelgemöller, M. O. Senge “Lead Structures for Applications in Photodynamic Therapy. 2. Synthetic Studies for Photo-triggered Release Systems of Bioconjugate Porphyrin Photosensitizers” Tetrahedron, 2009, 65, 7064-7078.

M. Oelgemöller, S. Gallagher, S. B. Tan, F. Chen, M. Macka “Microphotochemistry - Photochemistry in Microstructured Reactors” Proceedings of the 2009 AIChE Spring National Meeting, Tampa, FL, USA, 26.-30. April 2009, AIChE, 2009, ISBN: 978-0-8169-1052-6 (CD-Rom), 3 pages.

D. T. Santos, J. Q. Albarelli, K. Joyce, M. Oelgemöller “Sensitizer immobilization in photochemistry: evaluation of a novel green support” J. Chem. Technol. Biotechnol., 2009, 84, 1026-1030.

E. Haggiage, E. E. Coyle, K. Joyce, M. Oelgemöller “Green Photochemistry: Solarchemical Synthesis of 5-Amido-1,4-naphthoquinones” Green Chem., 2009, 11, 318-321.

[Up]

2008

E. E. Coyle, M. Oelgemöller “Micro-Photochemistry - Photochemistry in microstructured Reactors” Photochem. Photobiol. Sci., 2008, 7, 1313-1322 (featured on cover; Top 10 most viewed articles Jan. 2009).

F. Friedrichs, B. Murphy, D. Nayrat, T. Ahner, M. Funke, M. Ryan, J. Lex, J. Mattay, M. Oelgemöller “An improved procedure for the photoacylation of 1,4-naphthoquinone with aliphatic aldehydes” Synlett, 2008, 3137-3140.

M. Oelgemöller, E. Coyle, K. Joyce, S. Murphy “Activities of the Solar Chemistry Group in DCU” SESI Newslett., 2008, 3, 1-2.

E. E. Coyle, M. Oelgemöller “Photochemistry goes Micro” Chem. Technol., 2008, 5, T95.

[Up]

2007

M. Oelgemöller, C. Jung, J. Mattay “Green Photochemistry - The Production of Fine Chemicals with Sunlight” Pure Appl. Chem., 2007, 79, 1939-1947.

T. Tanaka, M. Oelgemöller, K. Fukui, F. Aoki, T. Mori, T. Ohno, Y. Inoue “Unusual CD Couplet Pattern Observed for the π* ← n Transition of Enantiopure (Z)-8-Methoxy-4-cyclooctenone: An Experimental and Theoretical Study by Electronic and Vibrational Circular Dichroism Spectroscopy and Density Functional Theory Calculation” Chirality, 2007, 19, 415-427.

[Up]

2006 and earlier (selected papers only)

M. Oelgemöller, N. Healy, L. de Oliveira, C. Jung, J. Mattay “Green Photochemistry: solar-chemical synthesis of Juglone with medium concentrated sunlight” Green Chem., 2006, 8, 831-834.

P. A. Waske, J. Mattay, M. Oelgemöller “Photoacylation of 2-substituted 1,4-naphthoquinones: a concise access to biologically active quinonoid compounds” Tetrahedron Lett., 2006, 47, 1329-1332.

O. Suchard, R. Kane, B. J. Roe, E. Zimmermann, C. Jung, P. A. Waske, J. Mattay, M. Oelgemöller “Photooxygenations of 1-naphthols: an environmentally friendly access to 1,4-naphthoquinones” Tetrahedron, 2006, 62, 1467-1473.

M. Oelgemöller, C. Jung, J. Ortner, J. Mattay, E. Zimmermann “Green Photochemistry: solar Photooxygenations with medium concentrated Sunlight” Green Chem., 2005, 7, 35-38.

A. G. Griesbeck, N. Maptue, S. Bondock, M. Oelgemöller “The excimer radiation system: a powerful tool for preparative organic photochemistry. A technical note” Photochem. Photobiol. Sci. 2003, 2, 450-451.

A. G. Griesbeck, T. Heinrich, M. Oelgemöller, A. Molis, J. Lex “A Photochemical Route for Efficient Cyclopeptide Formation with a Minimum of Protection/Activation Chemistry” J. Am. Chem. Soc. 200 2, 124, 10972-10973.

A. G. Griesbeck, M. Oelgemöller, J. Lex, A. Haeuseler, M. Schmittel “Synthesis of Sulfur-Containing Tricyclic Ring Systems by Means of Photoinduced Decarboxylative Cyclizations” Eur. J. Org. Chem. 2001, 1831-1843.

M. Oelgemöller, A. G. Griesbeck, J. Lex, A. Haeuseler, M. Schmittel, M. Niki, D. Hesek, Y. Inoue “Structural, CV- and IR-Spectroscopic Evidences for Preorientation in PET-Active Phthalimido Carboxylic Acids” Org. Lett. 2001, 3, 1593-1596.

A. G. Griesbeck, M. Oelgemöller, J. Lex “Photochemistry of MTM- and MTE-Esters of �-Phthalimido Carboxylic Acids: Macrocyclization versus Deprotection” J. Org. Chem. 2000, 65, 9028-9032.

A. G. Griesbeck, M. S. Gudipati, J. Hirt, J. Lex, M. Oelgemöller, H. Schmickler, F. Schouren “Photoinduced Electron Transfer Reactions with Quinolinic and Trimellic Acid Imides: Experiments and Spin Density Calculations” J. Org. Chem. 2000, 65, 7151-7157.

[Up]

Teaching

CH1001: Chemistry - A Central Science (Subject Coordinator)

CH1002: Chemistry - Principles and Applications (Subject Coordinator)

PC1005: Molecular Basis of Therapeutics 1 (Subject Coordinator)

PC2002: Molecular Basis of Therapeutics 3

CH3100: Molecular Basis of Therapeutics 4

CH3101: Chemical Kinetics and Mechanism

CH3102: Medicinal and Biological Chemistry (Subject Coordinator)

PP3150: Chemical Pharmacology

[Up]

Outreach Activities

Michael is a member of the Scientists in Schools program and a Blue Card Holder. Our group has run ‘the chemistry experience’ program at Wulguru State School, the Annandale Outside School Care and during the Open Day@JCU. In August 2013 we represented JCU at the Townsville Cultural Fest!

DSC04836 DSC04831 DSC04839

‘The chemistry experience’ during the Open Day@JCU (2014)

[Up]

Last update: 15-10-2014