Graduate Research School Available Projects Gene Networks in Multiple Sclerosis
Gene Networks in Multiple Sclerosis
- Aboriginals and Torres Strait Islanders in Marine Science
- Courses
- Future Students
- Current Students
- Research and Teaching
- Partners and Community
- About JCU
- Reputation and Experience
- Celebrating 50 Years
- Academy
- Anthropological Laboratory for Tropical Audiovisual Research (ALTAR)
- Anton Breinl Research Centre
- Agriculture Technology and Adoption Centre (AgTAC)
- Living on Campus
- How to apply
- Advanced Analytical Centre
- Alumni
- AMHHEC
- JCU Aquaculture Solutions
- AusAsian Mental Health Research Group
- ARCSTA
- Area 61
- Association of Australian University Secretaries
- Australian Lions Stinger Research
- Australian Tropical Herbarium
- Australian Quantum & Classical Transport Physics Group
- Boating and Diving
- JCU-CSIRO Partnership
- Employability Edge
- Career Ready Plan
- Careers at JCU
- Careers and Employability
- Chancellery
- Centre for Tropical Bioinformatics and Molecular Biology
- CITBA
- CMT
- CASE
- College of Business, Law and Governance
- College of Healthcare Sciences
- College of Medicine and Dentistry
- College of Science and Engineering
- CPHMVS
- Centre for Disaster Solutions
- CSTFA
- Cyber Security Hub
- Cyclone Testing Station
- The Centre for Disaster Studies
- Daintree Rainforest Observatory
- Discover Nature at JCU
- Research Division
- Services and Resources Division
- Education Division
- Elite Athletes
- eResearch
- Environmental Research Complex [ERC]
- Estate
- Fletcherview
- Foundation for Australian Literary Studies
- Gender Equity Action and Research
- General Practice and Rural Medicine
- JC 'U' Orientation
- Give to JCU
- Governance
- Information for JCU Cairns Graduates
- Art of Academic Writing
- Art of Academic Editing
- Graduate Research School
- Graduation
- Indigenous Education and Research Centre
- Indigenous Engagement
- Indigenous Legal Needs Project
- Inherent Requirements
- IsoTropics Geochemistry Lab
- IT Services
- International Schools
- International Students
- Research and Innovation Services
- JCU Eduquarium
- JCU Events
- JCU Global Experience
- JCU Ideas Lab
- JCU Job Ready
- JCU Motorsports
- JCU Prizes
- JCU Sport
- JCU Turtle Health Research
- Language and Culture Research Centre
- CEE
- LearnJCU
- Library
- Mabo Decision: 30 years on
- MARF
- Marine Geophysics Laboratory
- New students
- Off-Campus Students
- Office of the Vice Chancellor and President
- Virtual Open Day
- Orpheus
- Outstanding Alumni
- Parents and Partners
- Pathways to university
- Planning for your future
- Placements
- Policy
- PAHL
- Publications
- Professional Experience Placement
- Queensland Research Centre for Peripheral Vascular Disease
- Rapid Assessment Unit
- RDIM
- Researcher Development Portal
- Safety and Wellbeing
- Scholarships
- Contextual Science for Tropical Coastal Ecosystems
- Staff
- State of the Tropics
- Strategic Procurement
- Student Equity and Wellbeing
- Student profiles
- SWIRLnet
- TARL
- TESS
- TREAD
- TropEco for Staff and Students
- TQ Maths Hub
- TUDLab
- Unicare Centre and Unicampus Kids
- UAV
- VAVS Home
- Work Health and Safety
- WHOCC for Vector-borne & NTDs
- Media
- Copyright and Terms of Use
- Australian Institute of Tropical Health & Medicine
- Clinical Psychedelic Research Lab
Title of Project
Gene Networks in Multiple Sclerosis
Name of Advisor/s
Dr Margaret Jordan, Professor Alan Baxter
College
College of Public Health, Medical & Veterinary Sciences
Summary of Project
Multiple Sclerosis (MS) is an autoimmune disease resulting from a complex interaction between genetic and environmental factors. In an attempt to understand the integration of both sets of risk factors, we have compared mRNA transcripts between relapsing/remitting (RR) MS patients and healthy controls in 5 leukocyte subsets. A gene co-expression network was generated based on correlation of expression levels across >700 gene expression microarrays, and a module of mRNA transcripts that are differentially expressed in the monocytes of patients was identified. This project validates, characterizes and attempts to manipulate this transcriptional module in human cells ex-vivo and in the experimental autoimmune encephalomyelitis (EAE) model of central nervous system autoimmunity.
Key Words
Autoimmunity, Cellular immunology, Immunogenetics, Multiple sclerosis (MS), Mouse models, Genetics, Co-expression Networks.
Would suit an applicant who
Has experience with molecular biology techniques (such as DNA/RNA hybridization, in situ hybridization, polymerase chain reaction) and/or tissue culture techniques and is familiar with statistical analyses and/or bioinformatics.