Graduate Research School Available Projects Treating fish farm effluent using denitrifying bioreactors
Treating fish farm effluent using denitrifying bioreactors
- Aboriginals and Torres Strait Islanders in Marine Science
- Courses
- Future Students
- Current Students
- Research and Teaching
- Partners and Community
- About JCU
- Reputation and Experience
- Celebrating 50 Years
- Academy
- ALTAR
- Anton Breinl Research Centre
- Agriculture Technology and Adoption Centre
- Living on Campus
- Advanced Prawn Breeding Research Hub
- Advanced Analytical Centre
- Applying to JCU
- Alumni
- AMHHEC
- JCU Aquaculture Solutions
- AusAsian Mental Health Research Group
- ARCSTA
- Area 61
- Association of Australian University Secretaries
- Australian/NZ Students
- Australian Lions Stinger Research
- Boating and Diving
- JCU-CSIRO Partnership
- Employability Edge
- Career Ready Plan
- Australian Tropical Herbarium
- Careers at JCU
- Careers and Employability
- Australian Quantum & Classical Transport Physics Group
- Centre for Tropical Bioinformatics and Molecular Biology
- CITBA
- Chancellery
- CMT
- CASE
- College of Business, Law and Governance
- College of Healthcare Sciences
- WHOCC for N&M Education and Research
- College of Medicine and Dentistry
- College of Science and Engineering
- CPHMVS
- COVID-19 Advice
- Centre for Disaster Solutions
- CSTFA
- Cyclone Testing Station
- The Centre for Disaster Studies
- Daintree Rainforest Observatory
- Diploma of Higher Education
- Discover Nature at JCU
- Research Division
- Services and Resources Division
- Education Division
- Division of Tropical Environments and Societies
- Division of Tropical Health and Medicine
- Economic Geology Research Centre
- Elite Athletes
- eResearch
- ERC
- Estate
- Financial and Business Services Office
- Fletcherview
- Foundation for Australian Literary Studies
- Gender Equity Action and Research
- GetReady4Uni
- Give to JCU
- Governance
- Information for JCU Cairns Graduates
- Graduate Research School
- Graduation
- Indigenous Education and Research Centre
- Indigenous Engagement
- Indigenous Legal Needs Project
- Inherent Requirements
- IsoTropics Geochemistry Lab
- IT Services
- International Schools
- International Students
- JCU Connect
- JCU Eduquarium
- JCU Events
- JCU Global Experience
- JCU Ideas Lab
- JCU Job Ready
- JCU Motorsports
- JCU Prizes
- JCU Sport
- JCU Turtle Health Research
- Language and Culture Research Centre
- CEE
- LearnJCU
- Library
- Mabo Decision: 30 years on
- MARF
- Marine Geophysics Laboratory
- New students
- Off-Campus Students
- Office of the Vice Chancellor and President
- Virtual Open Day
- Orpheus
- Outstanding Alumni Awards
- Parents and Partners
- Pathways to university
- Planning for your future
- Placements
- Policy
- PAHL
- Publications
- Professional Experience Placement
- Queensland Research Centre for Peripheral Vascular Disease
- Rapid Assessment Unit
- RDIM
- Researcher Development Portal
- Safety and Wellbeing
- Scholarships
- Contextual Science for Tropical Coastal Ecosystems
- Staff
- State of the Tropics
- Strategic Procurement
- Student Equity and Wellbeing
- Student profiles
- SWIRLnet
- TARL
- TESS
- TREAD
- TropEco
- TQ Maths Hub
- TUDLab
- Unicare Centre and Unicampus Kids
- UAV
- VAVS Home
- Work Health and Safety
- WHOCC for Vector-borne & NTDs
- Media
- Copyright and Terms of Use
- Australian Institute of Tropical Health & Medicine
Title of Project
Treating fish farm effluent using denitrifying bioreactors
Advisor/s
A/Prof Paul Nelson, Dr Alex Cheesman, Prof Rocky de Nys
College or Research Centre
College of Science & Engineering
Summary of Project
This project will determine ways of improving the quality of fish farm effluent, particularly by removing nitrogen, using denitrifying bioreactors. The research will be carried out on a commercial fish farm in the Wet Tropics, using pilot-scale and commercial scale bioreactors, which are the first in Australia. Bioreactor performance will be assessed in relation to operating parameters and novel treatments. Denitrifying bioreactors route water through a high-carbon substrate under anaerobic conditions to encourage denitrification (the conversion of nitrate to atmospheric N2). This research is critical for facilitating development of the aquaculture industry in the environmentally sensitive Great Barrier Reef catchments.
Key Words
water quality; Great Barrier Reef; nitrogen pollution; water treatment; aquaculture
Would suit an applicant who
has interest in: biogeochemistry, environmental science, hydrology and catchment management.
Updated: 27 May 2020