Advanced Analytical Centre Analytical Facilities All Instruments Gas Chromatography-Liquid Chromatography (GC/LC)
Gas Chromatography-Liquid Chromatography (GC/LC)
- Aboriginals and Torres Strait Islanders in Marine Science
- Courses
- Future Students
- Current Students
- Research and Teaching
- Partners and Community
- About JCU
- Reputation and Experience
- Celebrating 50 Years
- Academy
- ALTAR
- Anton Breinl Research Centre
- Agriculture Technology and Adoption Centre
- Living on Campus
- Advanced Prawn Breeding Research Hub
-
Advanced Analytical Centre
- About us
- Commercial and external clients
-
Analytical Facilities
-
All Instruments
- X-ray Powder Diffraction (XRD)
- X-ray Fluorescence (XRF)
- Scanning Electron Microscopy (SEM)
- Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
- Laser ablation
- Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES)
- Gas Chromatography-Liquid Chromatography (GC/LC)
- Additional Equipment
- Laser Scanning Confocal Microscopy (LSCM)
- Advanced Analytical Centre
- Multicollector-Inductively Coupled Plasma-Mass Spectrometer (MC-ICP-MS)
- Electron Probe Microanalyser (EPMA or Microprobe)
- Sample Requirements
- Techniques and Facilities
-
All Instruments
- Staff
- Safety
-
Resources
- Element-to-stoichiometric oxide conversion factors
- Gunshot residue (GSR)
- FAQ ICP
- FAQ Organic
- SEM images of local insects – N.Queensland
- False coloured images
- Notes on sample preparation of biological material for SEM
- Routine XRF element analysis @ AAC
- How to view/edit element maps from Jeol 8200 EPMA
- Standard ICP element analysis @ AAC
- FAQ - XRD/XRF
- Other JCU Facilities
- Contact the AAC
- Applying to JCU
- Alumni
- AMHHEC
- JCU Aquaculture Solutions
- AusAsian Mental Health Research Group
- ARCSTA
- Area 61
- Association of Australian University Secretaries
- Australian/NZ Students
- Australian Lions Stinger Research
- Boating and Diving
- JCU-CSIRO Partnership
- Employability Edge
- Career Ready Plan
- Australian Tropical Herbarium
- Careers at JCU
- Careers and Employability
- Australian Quantum & Classical Transport Physics Group
- Centre for Tropical Bioinformatics and Molecular Biology
- CITBA
- Chancellery
- CMT
- CASE
- College of Business, Law and Governance
- College of Healthcare Sciences
- WHOCC for N&M Education and Research
- College of Medicine and Dentistry
- College of Science and Engineering
- CPHMVS
- COVID-19 Advice
- Centre for Disaster Solutions
- CSTFA
- Cyclone Testing Station
- The Centre for Disaster Studies
- Daintree Rainforest Observatory
- Diploma of Higher Education
- Discover Nature at JCU
- Research Division
- Services and Resources Division
- Education Division
- Division of Tropical Environments and Societies
- Division of Tropical Health and Medicine
- Economic Geology Research Centre
- Elite Athletes
- eResearch
- ERC
- Estate
- Financial and Business Services Office
- Fletcherview
- Foundation for Australian Literary Studies
- Gender Equity Action and Research
- GetReady4Uni
- Give to JCU
- Governance
- Information for JCU Cairns Graduates
- Graduate Research School
- Graduation
- Indigenous Education and Research Centre
- Indigenous Engagement
- Indigenous Legal Needs Project
- Inherent Requirements
- IsoTropics Geochemistry Lab
- IT Services
- International Schools
- International Students
- Research and Innovation Services
- JCU Eduquarium
- JCU Events
- JCU Global Experience
- JCU Ideas Lab
- JCU Job Ready
- JCU Motorsports
- JCU Prizes
- JCU Sport
- JCU Turtle Health Research
- Language and Culture Research Centre
- CEE
- LearnJCU
- Library
- Mabo Decision: 30 years on
- National Reconciliation Week
- MARF
- Marine Geophysics Laboratory
- New students
- Off-Campus Students
- Office of the Vice Chancellor and President
- Virtual Open Day
- Orpheus
- Outstanding Alumni
- Parents and Partners
- Pathways to university
- Planning for your future
- Placements
- Policy
- PAHL
- Publications
- Professional Experience Placement
- Queensland Research Centre for Peripheral Vascular Disease
- Rapid Assessment Unit
- RDIM
- Researcher Development Portal
- Safety and Wellbeing
- Scholarships
- Contextual Science for Tropical Coastal Ecosystems
- Staff
- State of the Tropics
- Strategic Procurement
- Student Equity and Wellbeing
- Student profiles
- SWIRLnet
- TARL
- TESS
- TREAD
- TropEco
- TQ Maths Hub
- TUDLab
- Unicare Centre and Unicampus Kids
- UAV
- VAVS Home
- Work Health and Safety
- WHOCC for Vector-borne & NTDs
- Media
- Copyright and Terms of Use
- Australian Institute of Tropical Health & Medicine
Technique in brief
Chromatography is the general name given to the methods by which two or more compounds in a mixture are physically separated by distributing themselves between two phases: a stationary phase which can be a solid or liquid supported on a solid and a mobile phase, either a gas or a liquid which flows continuously around the stationary phase. The separation of the individual components results from the relative difference in affinity for the stationary phase. In liquid chromatography (LC), the flowing or mobile phase is a liquid, whereas in gas chromatography (GC) is a gas. Detection of the separated components in both GC and LC can be made by various means, one of the most sensitive being a mass spectrometer. The mass spectrometer can detect and record the relative masses and abundances of ions that are produced from compounds that have been separated using chromatography giving structural information.
Instrumentation
The current instrumentation is a Varian 1200L. The triple quadrupole MS allows analysis via MS or MS-MS, with the potential for detection in the parts per billion (ppb) range and access to more extensive fragmentation information.
The GC-MS system is equipped to allow for either Electron Ionization (EI), or Chemical Ionization (CI) both in either positive or negative ion mode. In addition the GC can be run as a stand-alone component, with detection using a Flame Ionization Detector (FID).
The HPLC system can also be run coupled to the MS or with its own internal UV detector. HPLC offers the ability to analyse compounds which do not lend themselves to GC methods, and can cope with compounds that are less thermally stable, that have a high molecular mass, or that are highly polar. The LC-MS can be equipped with APCI or electrospray sources.
Other detectors available include a UV-VIS Prostart 325, a Fluorescence Jasco FP-2020 and a GBC LC 1240 Refractive Index Detector.
Applications
Applications of these techniques include, identification and quantification of compounds in environmental samples (eg pesticides, oils and organic pollutants) and medical applications (eg drugs and bioindicators).
Sample Requirements
Compounds of interest must be extracted out of the samples and into solution.
Extracted samples must be free from particulates and precipitates.
Ideal solvents for GC methods are volatile solvents such as hexane, diethyl ether or dicholromethane.
For HPLC methods more polar solvents such as water and water mixtures, methanol and acetonitrile maybe used.
For further information contact: