
Advanced Analytical Centre Analytical Facilities All Instruments Advanced Analytical Centre
Advanced Analytical Centre
- Courses
- Future Students
- Current Students
- Research and Teaching
- Partners and Community
- About JCU
- Celebrating 50 Years
- Anton Breinl Research Centre
- Agriculture Technology and Adoption Centre
- Living on Campus
- Advanced Prawn Breeding Research Hub
-
Advanced Analytical Centre
- Information For
- About the Advanced Analytical Centre
-
Analytical Facilities
-
All Instruments
- X-ray Powder Diffraction (XRD)
- X-ray Fluorescence (XRF)
- Scanning Electron Microscopy (SEM)
- Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
- Laser ablation
- Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES)
- Gas Chromatography-Liquid Chromatography (GC/LC)
- Additional Equipment
- Laser Scanning Confocal Microscopy (LSCM)
- Advanced Analytical Centre
- Multicollector-Inductively Coupled Plasma-Mass Spectrometer (MC-ICP-MS)
- Electron Probe Microanalyser (EPMA or Microprobe)
- Sample Requirements
- Techniques and Facilities
-
All Instruments
-
Services and Resources
-
Resources and Extras
- Element-to-stoichiometric oxide conversion factors
- Gunshot residue (GSR)
- FAQ ICP
- Routine geochemical element analysis @ AAC
- FAQ Organic
- SEM images of local insects – N.Queensland
- False coloured images
- Notes on sample preparation of biological material for SEM
- Routine XRF element analysis @ AAC
- How to view/edit element maps from Jeol 8200 EPMA
- Standard ICP element analysis @ AAC
- FAQ - XRD/XRF
- Links to other Facilities
-
Resources and Extras
- AAC Contacts
- Applying to JCU
- Alumni
- AMHHEC
- Australian/NZ Students
- Australian Lions Stinger Research
- Boating and Diving
- Australian Tropical Herbarium
- ATSIP
- Careers at JCU
- Association of Australian University Secretaries
- Careers and Employability
- Australian Quantum & Classical Transport Physics Group
- CITBA
- Centre for Tropical Bioinformatics and Molecular Biology
- Chancellery
- CMT
- CASE
- College of Business, Law and Governance
- College of Healthcare Sciences
- College of Medicine and Dentistry
- College of Science and Engineering
- CPHMVS
- COVID-19 Advice
- CSTFA
- Centre for Disaster Solutions
- Daintree Rainforest Observatory
- Diploma of Higher Education
- Discover Nature at JCU
- Division of Research and Innovation
- Division of Tropical Environments and Societies
- Division of Tropical Health and Medicine
- Staff Intranet
- Economic Geology Research Centre
- Elite Athletes
- Estate
- Fletcherview
- Foundation for Australian Literary Studies
- Gender Equity Action and Research
- GetReady4Uni
- Give to JCU
- Information for JCU Cairns Graduates
- Graduate Research School
- Graduation
- JCU Ideas Lab
- Indigenous Education and Research Centre
- Indigenous Legal Needs Project
- IT Services
- Information for Agents
- International Students
- JCU College
- JCU Contact Information
- JCU Eduquarium
- JCU Global Experience
- JCU Motorsports
- JCU Prizes
- JCU Sport
- Language and Culture Research Centre
- LTSE
- LearnJCU
- Library
- MARF
- Marine Geophysics Laboratory
- New Students
- Off-Campus Students
- Office of the Provost
- Office of the Vice Chancellor and President
- Open Day
- Orpheus
- Outstanding Alumni Awards
- Parents and Partners
- Pathways to University
- Planning and Performance
- Planning for your future
- Placements
- Policy
- PAHL
- Publications
- Professional Experience Placement
- Queensland Research Centre for Peripheral Vascular Disease
- Rapid Assessment Unit
- Researcher Development Portal
- JCU Connect
- Safety and Wellbeing
- Scholarships @ JCU
- SICEM
- Staff
- Student Equity and Wellbeing
- TESS
- TREAD
- TropEco
- TQ Maths Hub
- TUDLab
- Unicare Centre and Unicampus Kids
- UAV
- VAVS Home
- Work Health and Safety
- WHOCC for Vector-borne & NTDs
- Media
- Copyright and Terms of Use
- Australian Institute of Tropical Health & Medicine
Atomic Force Microscopy (AFM)
No alt text
Technique in brief
An atomic force microscope (AFM) is a high-resolution, scanning microscope capable of imaging and measuring samples on the nanometer to angstrom scale. A fine probe on a cantilever is used to scan the surface of a specimen. Forces generated as the tip of the probe interacts with the surface are recorded as deflections on the cantilever. Using a wide variety of scanning modes and tip designs many different properties of a specimen can be examined including; 3-dimensional mapping of topography, phase imaging, mechanical, magnetic and electrical properties.
Instrumentation
The current AFM is a NT-MDT NTEGRA , a high-resolution, low-noise scanning probe microscope with integrated analysis software for a range of AFM applications. In addition, a Hysitron Triboscope nano-indenter interfaces with the AFM for the measurement of mechanical properties.
Applications
AFM techniques:
In air & liquid: AFM (contact + semi-contact) / Lateral Force Microscopy / Phase Imaging/ Force Modulation/ Adhesion Force Imaging/ Lithography: AFM (Force)
In air only: Magnetic Force Microscopy/ Electrostatic Force Microscopy/ Scanning Capacitance Microscopy/ Kelvin Probe Microscopy/ Spreading Resistance Imaging/ Lithography: AFM (Current)
Nano-indenter techniques:
Measurement of mechanical properties such as hardness, elastic modulus, fracture toughness, ramped and constant force scratch resistance, friction coefficient, wear, and thin film interfacial adhesion.
Sample requirements
-
The maximum scan height for the AFM is 10 µm, therefore a sample must be very flat – at least within the desired scanning region – before it can be imaged.
-
Ideally, samples will be no greater than 1 x 1 x 1 cm3, however it is in theory possible to image samples larger than this.
-
Samples intended for analysis via the TriboScope® NanoIndenter must be fastened onto a steel substrate using a thin, even layer of super glue, and will be no larger than 1 cm in height, breadth or depth.
Contact for more information/help: Shane.Askew@jcu.edu.au