Advanced Analytical Centre Analytical Facilities All Instruments X-ray Powder Diffraction (XRD)
X-ray Powder Diffraction (XRD)
- Aboriginals and Torres Strait Islanders in Marine Science
- Courses
- Future Students
- Current Students
- Research and Teaching
- Partners and Community
- About JCU
- Reputation and Experience
- Celebrating 50 Years
- Academy
- Anthropological Laboratory for Tropical Audiovisual Research (ALTAR)
- Anton Breinl Research Centre
- Agriculture Technology and Adoption Centre
- Living on Campus
- Advanced Prawn Breeding Research Hub
-
Advanced Analytical Centre
- About us
- Commercial and external clients
-
Analytical Facilities
-
All Instruments
- X-ray Powder Diffraction (XRD)
- X-ray Fluorescence (XRF)
- Scanning Electron Microscopy (SEM)
- Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
- Laser ablation
- Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES)
- Gas Chromatography-Liquid Chromatography (GC/LC)
- Additional Equipment
- Laser Scanning Confocal Microscopy (LSCM)
- Advanced Analytical Centre
- Multicollector-Inductively Coupled Plasma-Mass Spectrometer (MC-ICP-MS)
- Electron Probe Microanalyser (EPMA or Microprobe)
- Sample Requirements
- Techniques and Facilities
-
All Instruments
- Staff
- Safety
-
Resources
- Element-to-stoichiometric oxide conversion factors
- Gunshot residue (GSR)
- FAQ ICP
- FAQ Organic
- SEM images of local insects – N.Queensland
- False coloured images
- Notes on sample preparation of biological material for SEM
- Routine XRF element analysis @ AAC
- How to view/edit element maps from Jeol 8200 EPMA
- Standard ICP element analysis @ AAC
- FAQ - XRD/XRF
- Other JCU Facilities
- Contact the AAC
- Applying to JCU
- Alumni
- AMHHEC
- JCU Aquaculture Solutions
- AusAsian Mental Health Research Group
- ARCSTA
- Area 61
- Association of Australian University Secretaries
- Australian/NZ Students
- Australian Lions Stinger Research
- Boating and Diving
- JCU-CSIRO Partnership
- Employability Edge
- Career Ready Plan
- Australian Tropical Herbarium
- Careers at JCU
- Careers and Employability
- Australian Quantum & Classical Transport Physics Group
- Centre for Tropical Bioinformatics and Molecular Biology
- CITBA
- Chancellery
- CMT
- CASE
- College of Business, Law and Governance
- College of Healthcare Sciences
- WHOCC for N&M Education and Research
- College of Medicine and Dentistry
- College of Science and Engineering
- CPHMVS
- COVID-19 Advice
- Centre for Disaster Solutions
- CSTFA
- Cyclone Testing Station
- The Centre for Disaster Studies
- Daintree Rainforest Observatory
- Diploma of Higher Education
- Discover Nature at JCU
- Research Division
- Services and Resources Division
- Education Division
- Division of Tropical Environments and Societies
- Division of Tropical Health and Medicine
- Economic Geology Research Centre
- Elite Athletes
- eResearch
- Environmental Research Complex [ERC]
- Estate
- Financial and Business Services Office
- Fletcherview
- Foundation for Australian Literary Studies
- Gender Equity Action and Research
- GetReady4Uni
- Give to JCU
- Governance
- Information for JCU Cairns Graduates
- Graduate Research School
- Graduation
- Indigenous Education and Research Centre
- Indigenous Engagement
- Indigenous Legal Needs Project
- Inherent Requirements
- IsoTropics Geochemistry Lab
- IT Services
- International Schools
- International Students
- Research and Innovation Services
- JCU Eduquarium
- JCU Events
- JCU Global Experience
- JCU Ideas Lab
- JCU Job Ready
- JCU Motorsports
- JCU Prizes
- JCU Sport
- JCU Turtle Health Research
- Language and Culture Research Centre
- CEE
- LearnJCU
- Library
- Mabo Decision: 30 years on
- National Reconciliation Week
- MARF
- Marine Geophysics Laboratory
- New students
- Off-Campus Students
- Office of the Vice Chancellor and President
- Virtual Open Day
- Orpheus
- Outstanding Alumni
- Parents and Partners
- Pathways to university
- Planning for your future
- Placements
- Policy
- PAHL
- Publications
- Professional Experience Placement
- Queensland Research Centre for Peripheral Vascular Disease
- Rapid Assessment Unit
- RDIM
- Researcher Development Portal
- Safety and Wellbeing
- Scholarships
- Contextual Science for Tropical Coastal Ecosystems
- Staff
- State of the Tropics
- Strategic Procurement
- Student Equity and Wellbeing
- Student profiles
- SWIRLnet
- TARL
- TESS
- TREAD
- TropEco
- TQ Maths Hub
- TUDLab
- Unicare Centre and Unicampus Kids
- UAV
- VAVS Home
- Work Health and Safety
- WHOCC for Vector-borne & NTDs
- Media
- Copyright and Terms of Use
- Australian Institute of Tropical Health & Medicine
The technique in brief
X-ray powder Diffraction is a technique used to determine the crystallographic structure of natural and synthetic materials. A beam of monochromatic (single wavelength) X-rays are focused on to the surface of a finely powdered sample. The X-rays are scattered (diffracted) as they interact with the sample material, the angle of which is characteristic of the crystal lattice of the material analysed. By rotating an X-ray detector around the sample the angle and intensity of the resultant diffracted X-rays can be measured allowing for the identification of the mineral(s) present.
Current instrumentation
A Siemens D5000 Diffractometer (XRD) theta-2 theta goniometer with a copper anode x-ray tube, fixed slits , monochromator and a forty position sample changer allows phase & mineral identification. DiffracPlus with the search/match option is used to collect and analyse the diffraction data. Quantitative XRD Analysis is performed using either DQUANT or SIROQUANT dependent on the material and standards available.
Applications
Powder XRD is used in many areas where the identification of unknown materials is required; these include geological, environmental, material science, biological and industrial applications. Identification of mineral phases is made by comparison to extensive collections of reference data. For the interpretation of single phase material this process can be relatively simple. However, with increasing phases present this can become more complex, particularly with the overlay of one set of crystal peaks on another. It is often necessary to have element chemistry of the sample in order to refine search patterns (typically at the AAC we will suggest that if the chemistry cannot be supplied that we also perform a semi-quantitative XRF analysis.
Sample requirements
Powder XRD requires the samples be crushed to a fine powder and the grains randomly distributed when presented to the X-ray beam.
For further information contact the officer in charge:
or